wiwi/rc/
inner.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
use crate::prelude::*;
use crate::macro_util::void;
use self::alloc_mod::Layout;
use self::atomic::Ordering::*;

#[repr(transparent)]
pub struct RcInner<C, V, S> {
	ptr: ptr::NonNull<RcLayout<C, V, S>>
}

// if fields in this struct need to change,
// make sure to change `calc_layout` accordingly
#[repr(C)]
struct RcLayout<C, V, S> {
	/// The reference counter (handles counting both strong and weak references)
	counter: C,

	/// The length of the slice stored in the unsized portion
	slice_len: usize,

	/// The value (the sized portion)
	value: V,

	/// A "header" of the unsized slice portion I guess?
	///
	/// This forces this struct to have an alignment of (at least) S's alignment,
	/// while also not requiring that there be at least 1 S element in this struct
	/// itself, and the slice will follow right after this field.
	slice: [S; 0]
}

#[inline]
pub fn new_from_value<C, V>(value: V) -> RcInner<C, V, ()>
where
	C: Counter
{
	new_from_value_and_slice_copy(value, &[])
}

#[inline]
pub fn new_from_array_into_slice<C, S, const N: usize>(array: [S; N]) -> RcInner<C, (), S>
where
	C: Counter
{
	new_from_value_and_array_into_slice((), array)
}

#[inline]
pub fn new_from_slice_clone<C, S>(slice: &[S]) -> RcInner<C, (), S>
where
	C: Counter,
	S: Clone
{
	new_from_value_and_slice_clone((), slice)
}

#[inline]
pub fn new_from_slice_copy<C, S>(slice: &[S]) -> RcInner<C, (), S>
where
	C: Counter,
	S: Copy
{
	new_from_value_and_slice_copy((), slice)
}

#[inline]
pub fn new_from_value_and_array_into_slice<C, V, S, const N: usize>(value: V, array: [S; N]) -> RcInner<C, V, S>
where
	C: Counter
{
	let array = ManuallyDrop::new(array);

	// SAFETY: we put the array into `ManuallyDrop`
	unsafe { new_from_value_and_slice_copy_unchecked(value, &*array) }
}

#[inline]
pub fn new_from_value_and_slice_clone<C, V, S>(value: V, slice: &[S]) -> RcInner<C, V, S>
where
	C: Counter,
	S: Clone
{
	let instance = alloc_instance::<_, _, S>(slice.len());

	// SAFETY:
	// - instance just allocated in statement above
	// - because just allocated, we must have exclusive reference to `instance`
	// - reference is used just for this single `write` statement and
	//   dropped immediately after
	unsafe { void!(value_uninit(instance).write(value)) }

	// SAFETY: instance just allocated in statement above
	let ptr = unsafe { slice_thin_ptr(instance).as_ptr() };

	slice.iter().enumerate().for_each(|(i, s)| {
		// SAFETY: `ptr` is writeable for `slice.len()` elements
		let ptr = unsafe { ptr.add(i) };

		// SAFETY: see above
		unsafe { ptr.write(s.clone()) }
	});

	instance
}

#[inline]
pub fn new_from_value_and_slice_copy<C, V, S>(value: V, slice: &[S]) -> RcInner<C, V, S>
where
	C: Counter,
	S: Copy
{
	// SAFETY: `S: Copy` enforced by trait bound
	unsafe { new_from_value_and_slice_copy_unchecked(value, slice) }
}

/// # Safety
///
/// The provided slice should either contain elements that implement [`Copy`],
/// or the input slice should be prevented from dropping to avoid double
/// dropping elements.
#[inline]
unsafe fn new_from_value_and_slice_copy_unchecked<C, V, S>(value: V, slice: &[S]) -> RcInner<C, V, S>
where
	C: Counter
{
	let instance = alloc_instance(slice.len());

	// SAFETY:
	// - instance just allocated in statement above
	// - because just allocated, we must have exclusive reference to `instance`
	// - reference is used just for this single `write` statement and
	//   dropped immediately after
	unsafe { void!(value_uninit(instance).write(value)) }

	// SAFETY: instance just allocated in statement above
	let ptr = unsafe { slice_thin_ptr(instance).as_ptr() };

	// SAFETY: `ptr` is writeable for `slice.len()` elements
	unsafe {
		ptr::copy_nonoverlapping(
			slice.as_ptr(),
			ptr,
			slice.len()
		)
	}

	instance
}

/// Initialise a new instance with the provided length
///
/// The instance returned will have fields `counter` and `slice_length` fields
/// initialised. Counter is set to 1 strong and 1 weak according to contract of
/// [`Counter`]. Caller is responsible for initialising the `value` and `slice`
/// fields.
#[inline]
fn alloc_instance<C, V, S>(slice_len: usize) -> RcInner<C, V, S>
where
	C: Counter
{
	let layout = calc_layout::<C, V, S>(slice_len);

	// SAFETY: `calc_layout` never returns layout with 0 size
	let ptr = unsafe { alloc(layout) };

	let Some(ptr) = ptr::NonNull::new(ptr.cast()) else {
		alloc_mod::handle_alloc_error(layout)
	};

	let instance = RcInner { ptr };

	// we can fill in counter since we know the type of counter already
	// SAFETY:
	// - instance just allocated in statements above
	// - because just allocated, we must have exclusive reference to `instance`
	// - reference is used just for this single `write` statement and
	//   dropped immediately after
	unsafe { void!(counter_uninit(instance).write(C::new())) }

	// we can fill in length since that will never change
	// SAFETY: same as above
	unsafe { void!(slice_len_uninit(instance).write(slice_len)) }

	instance
}

/// Drop the value and slice contents of the provided instance
///
/// # Safety
///
/// This instance must be fully initialised, and this must be the first time
/// this function is called on this particular `instance`.
///
/// There also must not be any existing references to `slice`
/// so we can safely create an exclusive reference to the slice to drop it.
/// Ideally we can do this through a fat pointer directly without needing to
/// create an intermediate wide reference, but, those APIs are unstable right
/// now smh
#[inline]
pub unsafe fn drop_instance<C, V, S>(instance: RcInner<C, V, S>)
where
	C: Counter
{
	// SAFETY: caller promises `instance` is fully initialised
	let value_ptr = unsafe { value_ptr(instance).as_ptr() };

	// SAFETY: see above
	unsafe { ptr::drop_in_place(value_ptr) }

	// SAFETY: caller promises `instance` is fully initialised, and that we can
	// safely create an exclusive reference. If this is only called in `drop`
	// handler of the last strong pointer, this should be safe. We drop here
	// using this temporary exclusive reference which is dropped before this
	// function returns, so dealloc can run without triggering UB
	let slice_ref = unsafe { slice_mut(instance) };

	// SAFETY: see above
	unsafe { ptr::drop_in_place(slice_ref) }
}

/// Drop the counter and deallocate the backing allocation of the provided instance
///
/// # Safety
///
/// This instance must be in the partially initialised state following a call to
/// [`drop_instance`], and this must be the first time this function is called on
/// this particular `instance`. This may be called on an instance that is still
/// fully initialised (ie. [`drop_instance`] has not been called on it), but
/// that is equivalent to leaking the value and slice fields, and is almost
/// certainly incorrect.
#[inline]
pub unsafe fn dealloc_instance<C, V, S>(instance: RcInner<C, V, S>)
where
	C: Counter
{
	// SAFETY: caller promises `counter` is initialised
	let counter_ptr = unsafe { counter_ptr(instance).as_ptr() };

	// SAFETY: see above
	unsafe { ptr::drop_in_place(counter_ptr) }

	// SAFETY: caller promises `slice_len` is initialised
	let slice_len = unsafe { slice_len(instance) };

	let layout = calc_layout::<C, V, S>(slice_len);

	// SAFETY: see above
	unsafe { dealloc(instance.ptr.as_ptr().cast(), layout) }
}

/// Calculate the layout to allocate a new instance with the specified counter,
/// value type, slice type, and slice length
// TODO: make this fn `const` when `feature(const_alloc_layout)` is stable
#[inline]
fn calc_layout<C, V, S>(slice_len: usize) -> Layout {
	fn inner<C, V, S>(slice_len: usize) -> Option<Layout> {
		// if the size of `V` is not an even multiple of the align of the rest of the
		// struct (max of `usize` and `C`), and align of `S` is less than or equal to
		// align of `V`, the `slice` field will be at the end of `V` and there will be
		// some padding after it. I don't think this causes UB, but it will allocate
		// and use more memory than is necessary in these edge cases. So, we calculate
		// it manually (we can do this because `repr(C)`), to attach the real layout
		// of the slice where `slice` would have been, and place some additional checks
		// in debug to assert it would have been the same as just using `Layout::new`.

		let mut layout = Layout::new::<()>();

		macro_rules! extend_layout {
			($field_name:ident, $layout:expr) => {
				let new = layout
					.extend($layout)
					.ok()?;

				debug_assert_eq!(
					mem::offset_of!(RcLayout<C, V, S>, $field_name),
					new.1
				);

				layout = new.0;
			}
		}

		extend_layout!(counter, Layout::new::<C>());
		extend_layout!(slice_len, Layout::new::<usize>());
		extend_layout!(value, Layout::new::<V>());
		extend_layout!(slice, Layout::array::<S>(slice_len).ok()?);

		Some(layout.pad_to_align())
	}

	inner::<C, V, S>(slice_len).expect("rc layout calculation failed")
}

/// # Safety
///
/// - The provided `instance` must not have been deallocated
#[inline]
unsafe fn counter_ptr<C, V, S>(instance: RcInner<C, V, S>) -> ptr::NonNull<C>
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { &raw mut (*instance.ptr.as_ptr()).counter };

	// SAFETY: ptr is guaranteed to be nonnull
	unsafe { ptr::NonNull::new_unchecked(ptr) }
}

/// # Safety
///
/// - The provided `instance` must not have been deallocated
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
/// - The returned reference must be the only mut reference into `counter` (exclusive borrow)
#[inline]
unsafe fn counter_uninit<'h, C, V, S>(instance: RcInner<C, V, S>) -> &'h mut MaybeUninit<C>
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { counter_ptr(instance).as_ptr() };

	// SAFETY: ptr is valid, and `MaybeUninit` has same ABI as inner type
	unsafe { &mut *ptr.cast() }
}

/// # Safety
///
/// - The provided `instance` must not have been deallocated
/// - The provided `instance` must have field `counter` already initialised
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
#[inline]
pub unsafe fn counter_ref<'h, C, V, S>(instance: RcInner<C, V, S>) -> &'h C
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { counter_ptr(instance).as_ptr() };

	// SAFETY: ptr is valid
	unsafe { &*ptr }
}

/// # Safety
///
/// - The provided `instance` must not have been deallocated
#[inline]
unsafe fn slice_len_ptr<C, V, S>(instance: RcInner<C, V, S>) -> ptr::NonNull<usize>
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { &raw mut (*instance.ptr.as_ptr()).slice_len };

	// SAFETY: ptr is guaranteed to be nonnull
	unsafe { ptr::NonNull::new_unchecked(ptr) }
}

/// # Safety
///
/// - The provided `instance` must not have been deallocated
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
/// - The returned reference must be the only mut reference into `slice_len` (exclusive borrow)
#[inline]
unsafe fn slice_len_uninit<'h, C, V, S>(instance: RcInner<C, V, S>) -> &'h mut MaybeUninit<usize>
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { slice_len_ptr(instance).as_ptr() };

	// SAFETY: ptr is valid, and `MaybeUninit` has same ABI as inner type
	unsafe { &mut *ptr.cast() }
}

/// # Safety
///
/// - The provided `instance` must not have been deallocated
/// - The provided `instance` must have field `slice_len` already initialised
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
#[inline]
unsafe fn slice_len<C, V, S>(instance: RcInner<C, V, S>) -> usize
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { slice_len_ptr(instance).as_ptr() };

	// SAFETY: ptr is valid
	unsafe { *ptr }
}

/// # Safety
///
/// - The provided `instance` must not have been dropped or deallocated
#[inline]
unsafe fn value_ptr<C, V, S>(instance: RcInner<C, V, S>) -> ptr::NonNull<V>
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { &raw mut (*instance.ptr.as_ptr()).value };

	// SAFETY: ptr is guaranteed to be nonnull
	unsafe { ptr::NonNull::new_unchecked(ptr) }
}

/// # Safety
///
/// - The provided `instance` must not have been dropped or deallocated
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
/// - The returned reference must be the only mut reference into `value` (exclusive borrow)
#[inline]
unsafe fn value_uninit<'h, C, V, S>(instance: RcInner<C, V, S>) -> &'h mut MaybeUninit<V>
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { value_ptr(instance).as_ptr() };

	// SAFETY: ptr is valid, and `MaybeUninit` has same ABI as inner type
	unsafe { &mut *ptr.cast() }
}

/// # Safety
///
/// - The provided `instance` must not have been dropped or deallocated
/// - The provided `instance` must have field `value` already initialised
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
#[inline]
pub unsafe fn value_ref<'h, C, V, S>(instance: RcInner<C, V, S>) -> &'h V
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { value_ptr(instance).as_ptr() };

	// SAFETY: ptr is valid
	unsafe { &*ptr }
}

/// # Safety
///
/// - The provided `instance` must not have been dropped or deallocated
#[inline]
unsafe fn slice_thin_ptr<C, V, S>(instance: RcInner<C, V, S>) -> ptr::NonNull<S>
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { &raw mut (*instance.ptr.as_ptr()).slice };
	let ptr = ptr.cast::<S>();

	// SAFETY: ptr is guaranteed to be nonnull
	unsafe { ptr::NonNull::new_unchecked(ptr) }
}

/// # Safety
///
/// - The provided `instance` must not have been dropped or deallocated
/// - The provided `instance` must have field `slice_len` already initialised
/// - The provided `instance` must have `slice_len` elements in `slice` already initialised
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
#[inline]
pub unsafe fn slice_ref<'h, C, V, S>(instance: RcInner<C, V, S>) -> &'h [S]
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { slice_thin_ptr(instance).as_ptr() };

	// SAFETY: caller promises to uphold the requirements
	let slice_len = unsafe { slice_len(instance) };

	// SAFETY: caller promises ptr is valid for at least `len` elements
	unsafe { slice::from_raw_parts(ptr, slice_len) }
}

/// # Safety
///
/// - The provided `instance` must not have been dropped or deallocated
/// - The provided `instance` must have field `slice_len` already initialised
/// - The provided `instance` must have `slice_len` elements in `slice` already initialised
/// - `instance` must outlive `'h` (the lifetime of the returned reference)
/// - there must not be any other references, shared or exclusive, to `instance`,
///   so the returned exclusive reference can be valid
#[inline]
pub unsafe fn slice_mut<'h, C, V, S>(instance: RcInner<C, V, S>) -> &'h mut [S]
where
	C: Counter
{
	// SAFETY: caller promises to uphold the requirements
	let ptr = unsafe { slice_thin_ptr(instance).as_ptr() };

	// SAFETY: caller promises to uphold the requirements
	let slice_len = unsafe { slice_len(instance) };

	// SAFETY: caller promises ptr is valid for at least `len` elements
	unsafe { slice::from_raw_parts_mut(ptr, slice_len) }
}

impl<C, V, S> Clone for RcInner<C, V, S>
where
	C: Counter
{
	#[inline]
	fn clone(&self) -> Self {
		*self
	}
}

impl<C, V, S> Copy for RcInner<C, V, S>
where
	C: Counter
{}

/// Trait for structs that can count references
///
/// `wiwi` includes two implementations: one for single threaded access (akin
/// to `std`'s [`Rc`]), and the other for atomic multithreaded access (akin to
/// `std`'s [`Arc`]).
///
/// # Safety
///
/// You must implement this trait correctly (ie. functions must return correct
/// values), as values returned from functions are directly used to control the
/// allocation/deallocation of memory and dropping of values.
pub unsafe trait Counter: Sized {
	/// Create a new couter with strong and weak count both set to 1
	fn new() -> Self;

	/// Get the strong reference count
	fn strong_count(&self) -> usize;

	/// Get the weak reference count
	///
	/// Don't subtract the "fake" weak reference that
	/// is held by all the strong references.
	fn weak_count(&self) -> usize;

	/// Increment the strong count for creation of a new strong reference
	fn inc_strong_for_new_ref(&self);

	/// Decrements the strong count for dropping a reference, returning `true`
	/// if there are no more strong pointers left (and the value and items in
	/// the slice should be dropped)
	fn dec_strong_for_drop(&self) -> bool;

	/// Increments the weak count for creation of a new weak reference
	fn inc_weak_for_new_ref(&self);

	/// Decrements the weak count for dropping a reference, returning `true`
	/// if there are no more weak pointers left (and the allocation should be
	/// deallocated)
	fn dec_weak_for_drop(&self) -> bool;

	/// Increment the strong count if it is possible to upgrade a weak pointer
	/// to strong, and return `true`, otherwise return `false` and do nothing
	fn try_inc_strong_for_upgrade(&self) -> bool;
}

pub struct ThreadCounter {
	strong: cell::Cell<usize>,
	weak: cell::Cell<usize>,
	__not_thread_safe: PhantomData<*const ()>
}

// SAFETY: we implement everything correctly
unsafe impl Counter for ThreadCounter {
	#[inline]
	fn new() -> Self {
		Self {
			strong: cell::Cell::new(1),
			weak: cell::Cell::new(1),
			__not_thread_safe: PhantomData
		}
	}

	#[inline]
	fn strong_count(&self) -> usize {
		self.strong.get()
	}

	#[inline]
	fn weak_count(&self) -> usize {
		self.weak.get()
	}

	#[inline]
	fn inc_strong_for_new_ref(&self) {
		let old = self.strong.get();
		self.strong.set(old + 1);
	}

	#[inline]
	fn dec_strong_for_drop(&self) -> bool {
		let old = self.strong.get();
		self.strong.set(old - 1);
		old == 1
	}

	#[inline]
	fn inc_weak_for_new_ref(&self) {
		let old = self.weak.get();
		self.weak.set(old + 1);
	}

	#[inline]
	fn dec_weak_for_drop(&self) -> bool {
		let old = self.weak.get();
		self.weak.set(old - 1);
		old == 1
	}

	#[inline]
	fn try_inc_strong_for_upgrade(&self) -> bool {
		let old = self.strong.get();
		let should_upgrade = old > 0;

		if should_upgrade {
			self.strong.set(old + 1)
		}

		should_upgrade
	}
}

pub struct AtomicCounter {
	strong: AtomicUsize,
	weak: AtomicUsize
}

// SAFETY: we implement everything correctly
unsafe impl Counter for AtomicCounter {
	#[inline]
	fn new() -> Self {
		Self {
			strong: AtomicUsize::new(1),
			weak: AtomicUsize::new(1)
		}
	}

	#[inline]
	fn strong_count(&self) -> usize {
		self.strong.load(Relaxed)
	}

	#[inline]
	fn weak_count(&self) -> usize {
		self.weak.load(Relaxed)
	}

	#[inline]
	fn inc_strong_for_new_ref(&self) {
		self.strong.fetch_add(1, Relaxed);
	}

	#[inline]
	fn dec_strong_for_drop(&self) -> bool {
		let old = self.strong.fetch_sub(1, Release);
		if old != 1 { return false }

		atomic::fence(Acquire);
		true
	}

	#[inline]
	fn inc_weak_for_new_ref(&self) {
		self.weak.fetch_add(1, Relaxed);
	}

	#[inline]
	fn dec_weak_for_drop(&self) -> bool {
		let old = self.weak.fetch_sub(1, Release);
		if old != 1 { return false }

		atomic::fence(Acquire);
		true
	}

	#[inline]
	fn try_inc_strong_for_upgrade(&self) -> bool {
		self.strong
			.fetch_update(
				Acquire,
				Relaxed,
				|old| (old > 0).then(move || old + 1)
			)
			.is_ok()
	}
}